Last updated on 2018-9-21…
感知哈希算法(Perceptual hash algorithm),它的作用是对每张图片生成一个”指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。
方法简述
下面是一个最简单的实现:
第一步,缩小尺寸
- 将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
第二步,简化色彩
- 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
第三步,计算平均值
- 计算所有64个像素的灰度平均值。
第四步,比较像素的灰度
- 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
第五步,计算哈希值
- 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。
得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算”汉明距离“(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
代码实现
下面附了Wote用python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。
这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。
#!/usr/bin/python
import glob
import os
import sys
from PIL import Image
EXTS = 'jpg', 'jpeg', 'JPG', 'JPEG', 'gif', 'GIF', 'png', 'PNG'
def avhash(im):
if not isinstance(im, Image.Image):
im = Image.open(im)
im = im.resize((8, 8), Image.ANTIALIAS).convert('L')
avg = reduce(lambda x, y: x + y, im.getdata()) / 64.
return reduce(lambda x, (y, z): x | (z << y),
enumerate(map(lambda i: 0 if i < avg else 1, im.getdata())),
0)
def hamming(h1, h2):
h, d = 0, h1 ^ h2
while d:
h += 1
d &= d - 1
return h
if __name__ == '__main__':
if len(sys.argv) <= 1 or len(sys.argv) > 3:
print "Usage: %s image.jpg [dir]" % sys.argv[0]
else:
im, wd = sys.argv[1], '.' if len(sys.argv) < 3 else sys.argv[2]
h = avhash(im)
os.chdir(wd)
images = []
for ext in EXTS:
images.extend(glob.glob('*.%s' % ext))
seq = []
prog = int(len(images) > 50 and sys.stdout.isatty())
for f in images:
seq.append((f, hamming(avhash(f), h)))
if prog:
perc = 100. * prog / len(images)
x = int(2 * perc / 5)
print '\rCalculating... [' + '#' * x + ' ' * (40 - x) + ']',
print '%.2f%%' % perc, '(%d/%d)' % (prog, len(images)),
sys.stdout.flush()
prog += 1
if prog: print
for f, ham in sorted(seq, key=lambda i: i[1]):
print "%d\t%s" % (ham, f)
实际应用
实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。