数据竞赛Top解决方案开源整理

Data competition Top Solution

Posted by Jiayue Cai on November 15, 2018

Last updated on 2019-3-20…

感谢来自电子科大的Smile同学的分享,个人只做了一些校正和补充。

数据竞赛

  1. 2018科大讯飞AI营销算法大赛
    • Rank1:https://zhuanlan.zhihu.com/p/47807544
  2. 2018 IJCAI 阿里妈妈搜索广告转化预测
    • Rank1:https://github.com/plantsgo/ijcai-2018
    • Rank2:https://github.com/YouChouNoBB/ijcai-18-top2-single-mole-solution
    • https://blog.csdnnet/Bryan__/article/details/80600189
    • Rank3: https://github.com/luoda888/2018-IJCAI-top3
    • Rank8: https://github.com/fanfanda/ijcai_2018
    • Rank8: https://github.com/Gene20/IJCAI-18
    • Rank9(第一赛季)https://github.com/yuxiaowww/IJCAI-18-TIANCHI
    • Rank29: https://github.com/bettenW/IJCAI18_Tianchi_Rank29
    • Rank41: https://github.com/cmlaughing/IJCAI-18
    • Rank48: https://github.com/YunaQiu/IJCAI-18alimama
    • Rank53: https://github.com/altmanWang/IJCAI-18-CVR
    • Rank60: https://github.com/Chenyaorui/ijcai_2018
    • Rank81: https://github.com/wzp123456/IJCAI_18
    • Rank94: https://github.com/Yangtze121/-IJCAI-18-
  3. 2018腾讯广告算法大赛
    • Rank3: https://github.com/DiligentPanda/Tencent_Ads_Algo_2018
    • Rank6: https://github.com/nzc/tencent-contest
    • Rank7: https://github.com/guoday/Tencent2018_Lookalike_Rank7th
    • Rank9: https://github.com/ouwenjie03/tencent-ad-game
    • Rank10: https://github.com/keyunluo/Tencent2018_Lookalike_Rank10th
    • Rank10(初赛): https://github.com/ShawnyXiao/2018-Tencent-Lookalike
    • Rank11: https://github.com/liupengsay/2018-Tencent-social-advertising-algorithm-contest、https://my.oschina.net/xtzggbmkk/blog/1865680
    • Rank26: https://github.com/zsyandjyhouse/TencentAD_contest
    • Rank33: https://github.com/John-Yao/Tencent_Social_Ads2018
    • Rank69: https://github.com/BladeCoda/Tencent2018_Final_Phrase_Presto
  4. 2018高校大数据挑战赛-快手活跃用户预测
    • Rank1:https://github.com/drop-out/RNN-Active-User-Forecast、https://zhuanlan.zhihu.com/p/42622063
    • Rank4: https://github.com/chantcalf/2018-Rank4-
    • Rank13(初赛 a榜rank2 b榜rank5): https://github.com/luoda888/2018-KUAISHOU-TSINGHUA-Top13-Solutions
    • Rank15: https://github.com/sunwantong/Kuaishou-Active-User
    • Rank20: https://github.com/bigzhao/Kuaishou_2018_rank20th
    • Rank28(初赛 a榜rank1 b榜rank2):https://github.com/YangKing0834131/2018-KUAISHOU-TSINGHUA-Top28-Solutions-、https://github.com/FNo0/2018-KUAISHOU-Top28
  5. 2018JDATA 用户购买时间预测
    • Rank9:https://zhuanlan.zhihu.com/p/45141799
  6. 2018 DF风机叶片开裂预警
    • Rank2:https://github.com/SY575/DF-Early-warning-of-the-wind-power-system
  7. 2018 DF光伏发电量预测
    • Rank1:https://zhuanlan.zhihu.com/p/44755488?utm_source=qq&utm_medium=social&utm_oi=623925402599559168、https://mp.weixin.qq.com/s/Yix0xVp2SiqaAcuS6Q049g
  8. AI全球挑战者大赛-违约用户风险预测
    • Rank1:https://github.com/chenkkkk/User-loan-risk-prediction
  9. 2016融360-用户贷款风险预测
    • Rank7:https://github.com/hczheng/Rong360
  10. 2016 CCF-020优惠券使用预测
    • Rank1: https://github.com/wepe/O2O-Coupon-Usage-Forecast
  11. 2016 ccf-农产品价格预测
    • Rank2: https://github.com/xing89qs/CCF_Product
    • Rank35: https://github.com/wqlin/ccf-price-prediction
  12. 2016 ccf-客户用电异常
    • Rank4: https://github.com/AbnerYang/2016CCF-StateGrid
  13. 2016 ccf-搜狗的用户画像比赛
    • Rank1: https://github.com/hengchao0248/ccf2016_sougou
    • Rank3: https://github.com/AbnerYang/2016CCF-SouGou
    • Rank5: https://github.com/dhdsjy/2016_CCFsougou、https://github.com/dhdsjy/2016_CCFsougou2、https://github.com/prozhuchen/2016CCF-sougou、https://github.com/coderSkyChen/2016CCF_BDCI_Sougou
  14. 2016 ccf-联通的用户轨迹
    • RankX: https://github.com/xuguanggen/2016CCF-unicom
  15. 2016 ccf-Human or Robots
    • Rank6: https://github.com/pickou/ccf_human_or_robot
  16. 菜鸟-需求预测与分仓规划
    • Rank6: https://github.com/wepe/CaiNiao-DemandForecast-StoragePlaning
    • Rank10: https://github.com/xing89qs/TianChi_CaiNiao_Season2
  17. (Kaggle)2018 Data Science Bow
    • Rank1: https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
    • Rank4: https://www.kaggle.com/c/data-science-bowl-2018/discussion/55118
  18. 2018对抗挑战优胜经验分享
    • by snakers41: http://t.cn/RBMaq4y
    • GitHub:http://t.cn/RBMlfBH
  19. Galaxy Zoo challenge
    • http://benanne.github.io/2014/04/05/galaxy-zoo.html
  20. Kaggle Home Credit违约风险预测
    • Rank1: http://t.cn/RFsoHgv
  21. 第三届阿里云安全算法挑战赛
    • Rank1: https://github.com/poteman/Alibaba-3rd-Security-Algorithm-Challenge
  22. OGeek算法挑战赛(基于搜索的CTR预估)
    • Rank2:https://zhuanlan.zhihu.com/p/51422621

NLP

  1. 2018 DC达观-文本智能处理挑战
    • Rank1: https://github.com/ShawnyXiao/2018-DC-DataGrand-TextIntelProcess
    • Rank4: https://github.com/hecongqing/2018-daguan-competition
    • Rank10: https://github.com/moneyDboat/data_grand
    • Rank18: https://github.com/nlpjoe/daguan-classify-2018
    • RankX: https://github.com/yanqiangmiffy/daguan
  2. 智能客服问题相似度算法设计——第三届魔镜杯大赛
    • Rank6 https://github.com/qrfaction/paipaidai
    • Rank12:https://www.jianshu.com/p/827dd447daf9、https://github.com/LittletreeZou/Question-Pairs-Matching
    • Rank16:https://github.com/guoday/PaiPaiDai2018_rank16
    • Rank29: https://github.com/wangjiaxin24/daguan_NLP
  3. 2018JD Dialog Challenge 任务导向型对话系统挑战赛
    • Rank3: https://github.com/zengbin93/jddc_solution_4th
  4. 2018CIKM AnalytiCup – 阿里小蜜机器人跨语言短文本匹配算法竞赛
    • Rank2: https://github.com/zake7749/Closer
    • Rank12:https://github.com/Leputa/CIKM-AnalytiCup-2018
    • Rank18: https://github.com/VincentChen525/Tianchi/tree/master/CIKM%20AnalytiCup%202018
  5. 路透社新闻数据集“深度”探索性分析(词向量/情感分析)
    • https://www.kaggle.com/hoonkeng/deep-eda-word-embeddings-sentiment-analysis/notebook
  6. “神策杯”2018高校算法大师赛(关键词提取)
    • Rank1: http://www.dcjingsai.com/common/bbs/topicDetails.html?tid=2382
    • Rank2: https://github.com/bigzhao/Keyword_Extraction
    • Rank5: https://github.com/Dikea/ShenceCup.extract_keywords

CV

  1. Kaggle-TGS
    • Rank1: http://t.cn/EzkDlOC
    • Rank4: http://t.cn/EzuvemA、http://t.cn/EzuPvfp
    • Rank9: http://t.cn/EznzvYv
    • Rank22: http://t.cn/EzYkR6i
    • Rank56 https://github.com/Gary-Deeplearning/TGS-Salt
  2. Kaggle Google地标检索
    • Rank1: http://t.cn/R1i7Xiy
    • Rank14: http://t.cn/R1nQriY
  3. Lyft感知挑战赛
    • 赛题: http://t.cn/RBtrJcE
    • Rank4:http://t.cn/RBtrMdw、http://t.cn/RBJnlug
  4. (Kaggle)CVPR 2018 WAD视频分割
    • Rank2: http://t.cn/Ehp4Ggm
  5. Kaggle Google AI Open Images
    • Rank15: http://t.cn/RF1jnis
  6. Quick, Draw! Kaggle Competition Starter Pack
    • http://t.cn/EZAoZDM
  7. Kaggle植物幼苗图像分类挑战赛
    • Rank1: http://t.cn/RBssjf6
  8. Kaggle Airbus Ship Detection Challenge (Kaggle卫星图像船舶检测比赛)
    • Rank8: https://github.com/SeuTao/Kaggle_Airbus2018_8th_code

竞赛大佬的主页

  1. 植物 :https://github.com/plantsgo
  2. wepon :https://github.com/wepe
  3. Snake:https://github.com/luoda888
  4. Drop-out:https://github.com/drop-out
  5. 金老师:https://zhuanlan.zhihu.com/jlbookworm
  6. 渣大:https://github.com/nzc
  7. 郭大:https://github.com/guoday

资源整理

  • 数据比赛资讯:https://github.com/iphysresearch/DataSciComp
  • ApacheCN 的kaggle资料链接:https://github.com/apachecn/kaggle
  • Kaggle top方案整理:https://github.com/EliotAndres/kaggle-past-solutions
  • 介绍featexp 一个帮助理解特征的工具包 http://www.sohu.com/a/273552971_129720
  • Ask Me Anything session with a Kaggle Grandmaster Vladimir I. Iglovikov PDF:https://pan.baidu.com/s/1XkFwko_YrI5TfjjIai7ONQ
  • Owen Zhang访谈:Kaggle制胜的秘密 http://t.cn/RBzPcyg
  • How to Compete for Zillow Prize at Kaggle https://www.datasciencecentral.com/profiles/blogs/how-to-compete-for-zillow-prize-at-kaggle
  • Profiling Top Kagglers: Martin Henze http://blog.kaggle.com/2018/06/19/tales-from-my-first-year-inside-the-head-of-a-recent-kaggle-addict/
  • Kaggle数据科学词汇表 http://t.cn/Rdx72Cn
  • Kaggle比赛优胜方案汇总 http://t.cn/Rdkj3Co
  • Kaggle比赛实战教程(Pandas, Matplotlib, XGBoost/Colab) http://t.cn/ReIJOX0、http://t.cn/ReIJOXK
  • Kaggle看照片猜相机比赛心得分享 http://t.cn/Rkz5Q9y pdf: http://t.cn/Rkz5Q9L
  • Kaggle在线分类广告需求预测比赛优胜方案分享 http://t.cn/RFpQg9O
  • Kaggle:Winner Interview http://blog.kaggle.com/2018/09/14/pei-lien-chou/
  • Ask Me Anything session with a Kaggle Grandmaster Vladimir I. Iglovikov http://t.cn/Eww4nnu
  • 2018 NIPS视觉对抗挑战总结 http://t.cn/EAMqw0P

数据集

【开放数据集大列表】

  • http://t.cn/RFAoweW

【数据集搜索引擎】(Google启动新搜索引擎帮助科学家找到需要的数据集)

  • http://t.cn/RsAHucP
  • https://www.blog.google/products/search/making-it-easier-discover-datasets/

Dataset Search:

  • http://t.cn/RsAHuch

【fast.ai开放数据集】

  • http://t.cn/Ezzp51m
  • http://t.cn/EzzpXQ5
  • http://t.cn/EzA7XpZ

【计算机视觉“小众”数据集集锦】

  • http://t.cn/EZE9Vb7